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Abstract
Effective task representations should facili-
tate compositionality, such that after learning
a variety of basic tasks, an agent can perform
compound tasks consisting of multiple steps
simply by composing the representations of
the constituent steps together. While this is
conceptually simple and appealing, it is not
clear how to automatically learn representa-
tions that enable this sort of compositionality.
We show that learning to associate the repre-
sentations of current and future states with a
temporal alignment loss can improve compo-
sitional generalization, even in the absence
of any explicit subtask planning or reinforce-
ment learning. We evaluate our approach
across diverse robotic manipulation tasks as
well as in simulation, showing substantial
improvements for tasks specified with either
language or goal images.

1 Introduction
Compositionality is a core aspect of intelligent be-
havior, describing the ability to sequence previously
learned capabilities and solve new tasks (Lashley,
1951). In domains involving long-horizon decision-
making like robotics, various learning approaches
have been proposed to enable this property, including
hierarchical learning (Kulkarni et al., 2016), explicit
subtask planning (Ahn et al., 2022; Fang et al., 2022b;
Schrittwieser et al., 2021), and dynamic-programming-
based “stitching” (Ghugare et al., 2023; Kostrikov et al.,
2022). In practice, these techniques are often unstable
or data-inefficient in real-world robotics settings, mak-
ing them difficult to scale (Laidlaw et al., 2024).
By contrast, humans and animals are adept at quickly
composing behaviors to reach new goals (Lashley,
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1951). Possible explanations for these capabilities have
been proposed, including the ability to perform transi-
tive inference (Ciranka et al., 2022), learn successor rep-
resentations and causal models (Dayan, 1993b; Gopnik
et al., 2017), and plan with world models (Vikbladh
et al., 2019). In common among these theories is
the idea of learning structured representations of the
world, which inference about which actions will lead
to certain goals.

How might these concepts translate to algorithms for
robot learning? In this work, we study how adding an
auxiliary successor representation learning objective
affects compositional behavior in a real-world table-
top manipulation setting. We show that learning this
representation structure improves the ability of the
robot to perform long-horizon, compositionally-new
tasks, specified either through goal images or natu-
ral language instructions. Perhaps surprisingly, we
found that this temporal alignment does not need to
be used for training the policy or test-time inference,
as long as it is used as an auxiliary loss over the same
representations used for the tasks (Fig. 1).

We compare our method, Temporal Representation
Alignment (TRA), against past imitation and rein-
forcement learning baselines across a set of challeng-
ing multi-step manipulation tasks in the BridgeData
setup (Walke et al., 2023) as well as the OGBench sim-
ulation benchmark (Park et al., 2025). Unlike prior
work in setup, we focus on the compositional capa-
bilities of the robot policies: as a whole, the tasks are
out-of-distribution, but each distinct subtask can be
described through a goal image that lies in the training
distribution. Adding a simple time-contrastive align-
ment loss improves compositional performance by
>40% across 13 tasks in 4 evaluation scenes, and sim-
ulation results show better performance compared to
behavioral cloning (i.e., no structured representation
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Figure 1: We show our Temporal Representation Alignment (TRA) method performing a language task, “put all food items in
the bowl.” TRA adds a time-contrastive loss for learning task representations to use with a goal- and language-conditioned
policy. While TRA can implicitly decompose the task into steps and execute them one by one, the behavioral cloning (BC)
and offline RL (AWR) methods fail at this compositional task. The structured representations learned by TRA enable this
compositional behavior without explicit planning or hierarchical structure.

learning), and comparable performance to offline RL
methods that explicitly use a learned value function.

2 Related Work
Our approach builds upon prior work on goal- and
language-conditioned control, focusing particularly
on the problem of compositional generalization.
Robot manipulation with language and goals. Re-
cent improvements in robot learning datasets have
enabled the development of robot policies that can be
commanded with image goals and language instruc-
tions (Ahn et al., 2022; Shridhar et al., 2021; Walke
et al., 2023). These policies can be trained with goal-
and language-conditioned imitation learning from hu-
man demonstrations (Brohan et al., 2023; Chowdhery
et al., 2023; Jiang et al., 2023; Lynch and Sermanet, 2021;
Lynch et al., 2023), reinforcement learning (Chebotar
et al., 2023; Chen et al., 2021), or other forms of supervi-
sion (Bobu et al., 2023; Cui et al., 2023). When trained
to reach goals, methods can additionally use hind-
sight relabeling (Andrychowicz et al., 2017; Kaelbling,
1993) to improve performance (Dehaene et al., 2022;
Ding et al., 2019; Myers et al., 2023; Walke et al., 2023).
Our work shows how the benefits of goal-conditioned
and language-conditioned supervised learning can be
combined with temporal representation alignment to
enable compositionality that would otherwise require
planning or reinforcement learning.
Compositional generalization in sequential decision
making. In the context of decision making, composi-
tional generalization refers to the ability to generalize

to new behaviors that are composed of known sub-
behaviors (Rubino et al., 2023; Steedman, 2004). Bio-
logical learning systems show strong compositional
generalization abilities (Ciranka et al., 2022; Dehaene
et al., 2022; Dickins, 2011; Lake et al., 2019), and re-
cent work has explored how similar capabilities can
be achieved in artificial systems (Akyürek et al., 2021;
Ito et al., 2022; Lewis et al., 2024). In the context of
policy learning, exploiting the compositionality of the
behaviors can lead to generalization to unseen and
temporarily extended tasks (Fang et al., 2022b, 2019;
Ghugare et al., 2023; Kumar et al., 2023; Mandlekar
et al., 2021; Nasiriany et al., 2019).

Hierarchical and planning-based approaches also aim
to enable compositional behavior by explicitly parti-
tioning a task into its components (Fang et al., 2022a;
Myers et al., 2024a; Park et al., 2023; Zhang et al.,
2022). With improvements in vision-language models
(VLMs), many recent works have explored using a pre-
trained VLM to decompose a task into subtasks that
are more attainable for the low-level manipulation pol-
icy (Ahn et al., 2022; Attarian et al., 2022; Belkhale et al.,
2024; Kwon et al., 2023; Myers et al., 2024a; Singh et al.,
2023; Zhang et al., 2023). These approaches are limited
by the need for robust pre-trained models that can be
fine-tuned and prompted for embodied tasks. Our
contribution is to show compositional properties can
be achieved without any explicit hierarchical structure
or planning, by learning a structured representation
through time-contrastive representation alignment.
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Representation learning for states and tasks. State
and task representations for decision making aim to
improve generalization and exploit additional sources
of data. Recent work in the robotics domain have ex-
plored the use of pre-trained representations across
multimodal data, including images and language, for
downstream tasks (Cui et al., 2022; Jang et al., 2021;
Karamcheti et al., 2023; Li et al., 2022; Ma et al., 2023a;
Myers et al., 2023; Nair et al., 2022; Pari et al., 2022;
Shah and Kumar, 2021). In reinforcement learning
problems, representations are often trained to predict
future states, rewards, goals, or actions (Anand et al.,
2019; Fan et al., 2022; Ma et al., 2023b; Zhang et al.,
2021), and can improve generalization and sample ef-
ficiency when used as value functions (Barreto et al.,
2017; Blier et al., 2021; Choi et al., 2021; Dayan, 1993a;
Dosovitskiy and Koltun, 2017). Some recent works
have explored the use of additional structural con-
straints on representations to enable planning (Eysen-
bach et al., 2024; Fang et al., 2022a; Hafner et al., 2019;
Myers et al., 2025; Zhang et al., 2022), or enforced
metric properties to improve compositional general-
ization (Liu et al., 2023; Myers et al., 2024b; Wang et al.,
2023).

The key distinction between our approach and past
contrastive representation methods for robotics like
VIP (Ma et al., 2023b), GRIF (Myers et al., 2023), and
R3M (Nair et al., 2022) is that we focus on the real-
world compositional generalization capabilities en-
abled by simply aligning representations across time
in addition to the task modalities, without using the
learned representations for policy extraction or defin-
ing a value function.

3 Temporal Representation Alignment
When training a series of short-horizon goal-reaching
and instruction-following tasks, our goal is to learn a
representation space such that our policy can general-
ize to a new (long-horizon) task that can be viewed as a
sequence of known subtasks. We propose to structure
this representation space by aligning the representa-
tions of states, goals, and language in a way that is
more amenable to compositional generalization.

Notation. We take the setting of a goal- and
language-conditioned MDPMwith state space S , con-
tinuous action space A ⊆ (0, 1)dA , initial state distri-
bution p0, dynamics P(s′ | s, a), discount factor γ, and
language task distribution pℓ. A policy π(a | s) maps
states to a distribution over actions. We inductively
define the k-step (action-conditioned) policy visitation
distribution as:

pπ1 (s1 | s1, a1) ≜ p(s1 | s1, a1),

pπk+1(sk+1 | s1, a1) ≜∫
A

∫
S
p(sk+1 | s, a) dpπk (s | s1, a1) dπ(a | s)

pπk+t(sk+t | st, at) ≜ pπ(sk | s1, a1). (1)

Then, the discounted state visitation distribution can
be defined as the distribution over s+, the state reached
after K ∼ Geom(1− γ) steps:

pπγ (s
+ | s, a) ≜

∞∑
k=0

γkpπk (s
+ | s, a). (2)

We assume access to a dataset of expert demonstra-
tions D = {τi, ℓi}Ki=1, where each trajectory

τi = {st,i, at,i}Ht=1 ∈ S ×A (3)

is gathered by an expert policy πE, and is then an-
notated with pℓ(ℓi | s1,i, sH,i). Our aim is to learn
a policy π that can select actions conditioned on a
new language instruction ℓ. As in prior work (Walke
et al., 2023), we handle the continuous action space
by representing both our policy and the expert policy
as an isotropic Gaussian with fixed variance; we will
equivalently write π(a | s, φ) or denote the mode as
â = π(s, φ) for a task φ.

3.1 Representations for Reaching Distant Goals

We learn a goal-conditioned policy π(a | s, g) that
selects actions to reach a goal g from expert demon-
strations with behavioral cloning. Suppose we directly
selected actions to imitate the expert on two trajecto-
ries in D:

s1 s2 . . . sH w

w s′1 . . . s′H g
τi ∈ D (4)

When conditioned with the composed goal g, we
would be unable to imitate effectively as the composed
state-goal (s, g) is jointly out of the training distribu-
tion.

What would work for reaching g is to first condition
the policy on the intermediate waypoint w, then upon
reaching w, condition on the goal g, as the state-goal
pairs (si, w), (w, g), and (s′i, g) are all in the training
distribution. If we condition the policy on some in-
termediate waypoint distribution p(w) (or sufficient
statistics thereof) that captures all of these cases, we
can stitch together the expert behaviors to reach the
goal g.

Our approach is to learn a representation space that
captures this ability, so that a GCBC objective used
in this space can effectively imitate the expert on the
composed task. We begin with the goal-conditioned

3



Temporal Representation Alignment

behavioral cloning (Kaelbling, 1993) loss Lϕ,ψ,ξBC condi-
tioned with waypoints w.

LBC

(
{si, ai, s+i , gi}

K
i=1

)
=

K∑
i=1

log π
(
ai | si, ψ(gi)

)
. (5)

Enforcing the invariance needed to stitch Eq. (4) then
reduces to aligning ψ(g)↔ ψ(w). The temporal align-
ment objective ϕ(s) ↔ ϕ(s+) accomplishes this indi-
rectly by aligning both ψ(w) and ψ(g) to the shared
waypoint representation ϕ(w):

LNCE

(
{si, s+i }

K
i=1;ϕ, ψ

)
= log

(
eϕ(s

+
i )Tψ(si)∑K

j=1 e
ϕ(s+i )Tψ(sj)

)

+

K∑
j=1

log

(
eϕ(s

+
i )Tψ(si)∑K

i=1 e
ϕ(s+i )Tψ(sj)

)
(6)

3.2 Interfacing with Language Instructions
To extend the representations from Section 3.1 to com-
positional instruction following with language tasks,
we need some way to ground language into the ψ
(future state) representation space. We use a similar
approach to GRIF (Myers et al., 2023), which uses an
additional CLIP-style (Radford et al., 2021) contrastive
alignment loss with an additional pretrained language
encoder ξ:

LNCE

(
{gi, ℓi}Ki=1;ψ, ξ

)
=

K∑
i=1

log

(
eψ(gi)

T ξ(ℓi)∑K
j=1 e

ψ(gi)T ξ(ℓj)

)

+

K∑
j=1

log

(
eψ(gi)

T ξ(ℓi)∑K
i=1 e

ψ(gi)T ξ(ℓj)

)
(7)

3.3 Temporal Alignment
Putting together the objectives from Sections 3.1
and 3.2 yields the Temporal Representation Alignment
(TRA) approach. TRA structures the representation
space of goals and language instructions to better en-
able compositional generalization. We learn encoders
ϕ, ψ, and ξ to map states, goals, and language instruc-
tions to a shared representation space.

LNCE({xi, yi}Ki=1; f, h) =

K∑
i=1

log

(
ef(yi)

Th(xi)∑K
j=1 e

f(yi)Th(xj)

)

+

K∑
j=1

log

(
ef(yi)

Th(xi)∑K
i=1 e

f(yi)Th(xj)

)
(8)

LBC

(
{si, ai, s+i , ℓi}

K
i=1;π, ψ, ξ

)
=

K∑
i=1

log π
(
ai | si, ξ(ℓi)

)
+ log π

(
ai | si, ψ(s+i )

)
(9)

LTRA

(
{si, ai, s+i , gi, ℓi}

K
i=1;π, ϕ, ψ, ξ

)
(10)

= LBC

(
{si, ai, s+i , ℓi}

K
i=1;π, ψ, ξ

)︸ ︷︷ ︸
behavioral cloning

+ LNCE

(
{si, s+i }

K
i=1;ϕ, ψ

)︸ ︷︷ ︸
temporal alignment

+LNCE

(
{gi, ℓi}Ki=1;ψ, ξ

)︸ ︷︷ ︸
task alignment

Note that the NCE alignment loss uses a CLIP-style
symmetric contrastive objective (Eysenbach et al., 2024;
Radford et al., 2021) — we highlight the indices in the
NCE alignment loss (8) for clarity.
Our overall objective is to minimize Eq. (10) across
states, actions, future states, goals, and language tasks
within the training data:
min
π,ϕ,ψ,ξ

E(s1,i,a1,i,...,sH,i,aH,i,ℓ)∼D
i∼Unif(1...H)
k∼Geom(1−γ)

(11)

[
LTRA

(
{st,i, at,i, smin(t+k,H),i, sH,i, ℓ}Ki=1;π, ϕ, ψ, ξ

)]
.

(12)

Algorithm 1: Temporal Representation Alignment

1: input: dataset D = ({st,i, at,i}Ht=1, ℓi)
N
i=1

2: initialize networks Θ ≜ (π, ϕ, ψ, ξ)
3: while training do
4: sample batch

{
(st,i, at,i, st+k,i, ℓi)

}K
i=1
∼ D

for k ∼ Geom(1− γ)
5: Θ← Θ−α∇ΘLTRA

(
{st,i, at,i, st+k,i, ℓi}Ki=1; Θ

)
6: output: language-conditioned policy π(at|st, ξ(ℓ))

goal-conditioned policy π(at|st, ψ(g))

3.4 Implementation
A summary of our approach is shown in Algorithm 1.
In essence, TRA learns three encoders: ϕ, which en-
codes states, ψ which encodes future goals, and ξ
which encodes language instructions. Contrastive
losses are used to align state representations ϕ(st) with
future goal representations ψ(st+k), which are in turn
aligned with equivalent language task specifications
ξ(ℓ) when available. We then learn a behavior cloning
policy π that can be conditioned on either the goal or
language instruction through the representation ψ(g)
or ξ(ℓ), respectively.

3.5 Temporal Alignment and Compositionality
We will formalize the intuition from Section 3.1 that
TRA enables compositional generalization by consid-
ering the error on a “compositional” version of D,
denoted D∗. Using the notation from Eq. (3), we can
say D is distributed according to:

D ≜ DH ∼
K∏
i=1

p0(s1,i)pℓ(ℓi | s1,i, sH,i)

H∏
t=1

πE(at,i | st,i) P(st+1,i | st,i, at,i), (13)
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or equivalently

DH ∼
K∏
i=1

p0(s1,i)pℓ(ℓi | s1,i, sH,i)

H∏
t=1

eσ
2∥πE(st,i)−at,i∥2

P(st+1,i | st,i, at,i), (14)

by the isotropic Gaussian assumption. We will de-
fine D∗ ≜ DH′

to be a longer-horizon version of D
extending the behaviors gathered under πE across
a horizon αH ≥ H ′ ≥ H that additionally satisfies
a “time-isotropy” property: the marginal distribu-
tion of the states is uniform across the horizon, i.e.,
p0(s1,i) = p0(st,i) for all t ∈ {1 . . . H ′}.
We will relate the in-distribution imitation error
ERR(•;D) to the compositional out-of-distribution im-
itation error ERR(•;D∗). We define

ERR(π̂; D̃) = ED̃

[ 1

H

H∑
t=1

Eπ̂
[
∥ãt,i − π̂(s̃t,i, s̃H,i)∥2/dA

]]
for {s̃t,i, ãt,i, ℓ̃i}Ht=1 ∼ D̃. (15)

On the training dataset this is equivalent to the ex-
pected behavioral cloning loss from Eq. (9).
Assumption 1. The policy factorizes through inferred way-
points as:

goals: π(a | s, g) =∫
π(a | s, w) P(st = w | st+k = g) dw (16)

language: π(a | s, ℓ) =
∫
π(a | s, w)

P(st = w | st+k = g) P(st+k = g | ℓ) dw dg, (17)
where denote by π(s, g) the MLE estimate of the action a.

Theorem 1. SupposeD is distributed according to Eq. (13)
and D∗ is distributed according to Eq. (13). When γ >
1 − 1/H and α > 1, for optimal features ϕ and ψ under
Eq. (12), we have

ERR(π;D∗) ≤ ERR(π;D) + α− 1

2α
+
(α− 2

2α

)
1{α > 2}.

(18)

We can also define a notion of the language-
conditioned compositional generalization error:

ERRℓ(π;D∗) ≜ ED∗

[ 1

H

H∑
t=1

Eπ
[
∥ãt,i − π(s̃t,i, ℓ̃i)∥2

]]
.

Corollary 1.1. Under the same conditions as Theorem 1,

ERRℓ(π;D∗) ≤ ERRℓ(π;D)+α− 1

2α
+
(α− 2

2α

)
1{α > 2}.

The proofs as well as a visualization of the bound are
in Appendix F. Policy implementation details can be
found in Appendix B

4 Experiments
Our experimental evaluation aims to answer the fol-
lowing research questions for TRA:

1. Can TRA enable zero-shot composition of sequen-
tial tasks without additional rewards or planning?

2. Does TRA improve compositional generalization
over past methods?

3. How well does TRA capture skills that are less
common within the dataset?

4. Is temporal alignment by itself sufficient for effec-
tive compositional generalization?

0 0.2 0.4 0.6 0.8

TRA(Ours)
AWR
GRIF
Octo

LCBC

Success Rate

Instruction Following Performance

(a) Language instruction tasks

0 0.2 0.4 0.6 0.8

TRA(Ours)
AWR
GRIF
Octo

GCBC

Success Rate

Goal Reaching Performance

(b) Goal-image conditioned tasks

Figure 2: Aggregated performance on compositional gen-
eralization tasks, consisting of instruction-following and
goal-reaching tasks.

Figure 3: The tabletop manipulation setup used for the real-
world evaluation (see Walke et al., 2023).
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Table 1: Real-world Evaluation

Language-conditioned Goal-conditioned

Task TRA GRIF LCBC Octo AWR TRA GRIF GCBC Octo AWR

(A) open the drawer 0.80(±0.1)† 0.20(±0.2) 0.60(±0.2) 0.60(±0.2) 0.40(±0.2) 0.60(±0.2)† 0.60(±0.2) 0.40(±0.2) 0.50(±0.2) 0.80(±0.2)

(A) mushroom in drawer 0.80(±0.1) 0.80(±0.2) 0.40(±0.2) 0.00(±0.0) 0.60(±0.2) 0.90(±0.1) 0.40(±0.2) 0.80(±0.2) 0.90(±0.1) 0.60(±0.2)

(A) close drawer 0.60(±0.2) 0.60(±0.2) 0.40(±0.2) 0.60(±0.2) 0.40(±0.2) 1.00(±0.0) 0.40(±0.2) 0.80(±0.2) 0.60(±0.2) 0.40(±0.2)

(D) take the item out of the drawer 0.60(±0.2) 0.00(±0.0) 0.00(±0.0) 0.20(±0.2) 0.00(±0.0) 0.40(±0.2) 0.00(±0.0) 0.00(±0.0) 0.20(±0.2) 0.00(±0.0)

(B) put the spoons on towels 1.00(±0.0) 0.40(±0.2) 0.20(±0.2) 0.00(±0.0) 0.20(±0.2) 1.00(±0.0) 0.20(±0.2) 0.60(±0.2) 0.40(±0.2) 0.60(±0.2)

(B) put the spoons on the plates 0.80(±0.2) 0.20(±0.2) 0.20(±0.2) 0.20(±0.2) 0.00(±0.0) 1.00(±0.0) 0.00(±0.0) 0.40(±0.2) 0.00(±0.0) 0.80(±0.2)

(C) put the corn and sushi on plate 0.90(±0.1) 0.00(±0.0) 0.40(±0.2) 0.00(±0.0) 0.50(±0.2) 0.70(±0.1) 0.00(±0.0) 0.20(±0.2) 0.00(±0.0) 0.30(±0.1)

(C) sushi and mushroom in bowl 0.80(±0.2) 0.00(±0.0) 0.60(±0.2) 0.20(±0.2) 0.60(±0.2) 0.60(±0.2) 0.00(±0.0) 0.20(±0.2) 0.40(±0.2) 0.60(±0.2)

(C) corn, banana, and sushi in bowl 0.80(±0.1) 0.00(±0.0) 0.00(±0.0) 0.00(±0.0) 0.20(±0.1) 0.50(±0.2) 0.00(±0.0) 0.00(±0.0) 0.40(±0.2) 0.50(±0.2)

(D) corn on plate then sushi in pot 0.70(±0.1) 0.00(±0.0) 0.40(±0.2) 0.60(±0.2) 0.20(±0.2) 0.30(±0.1) 0.20(±0.2) 0.00(±0.0) 0.00(±0.0) 0.00(±0.0)

(A) sweep to the right 0.80(±0.1) 0.20(±0.2) 0.40(±0.2) 0.40(±0.2) 0.00(±0.0) 0.70(±0.1) 0.40(±0.2) 0.00(±0.0) 0.80(±0.2) 0.00(±0.0)

(B) fold cloth into the center 1.00(±0.0) 0.20(±0.2) 0.40(±0.2) 0.40(±0.2) 0.40(±0.2) 1.00(±0.0) 0.00(±0.0) 0.00(±0.0) 0.60(±0.2) 0.00(±0.0)

(B) move bell pepper and sweep towel 0.50(±0.2) 0.00(±0.0) 0.00(±0.0) 0.20(±0.2) 0.00(±0.0) 0.60(±0.2) 0.20(±0.2) 0.20(±0.2) 0.40(±0.2) 0.00(±0.0)

(A) One step tasks (B) Task concatenation
(C) Semantic generalization (D) Tasks with dependency

†The best-performing method(s) up to
statistical significance are highlighted

4.1 Real-World Experimental Setup
We evaluate TRA on a collection of held-out
compositionally-OOD tasks — tasks for which the in-
dividual substeps are represented in the dataset, but
the combination of those steps is unseen. For exam-
ple, in a task such as “removing a bell pepper from
a towel, and then sweep the towel”, both the tasks
“remove the bell pepper from the towel” and “sweep
the towel” have similar entries within BridgeData, but
such a combination of behaviors is unseen. We uti-
lize a real-world robot manipulation interface with a
7 DoF WidowX250 manipulator arm with 5Hz execu-
tion frequency. We train on an augmented version of
the BridgeDataV2 dataset (Walke et al., 2023), which
contains over 50k trajectories with 72k language anno-
tations. More details can be seen Appendix B.
In order to specifically test the ability of TRA to per-
form compositional generalization, we organize our
evaluation tasks into 4 scenes that are unseen in Bridge-
Data, each with increasing difficulty:

Set A – One-Step: These are the only tasks that are
not compositionally-OOD, as all the tasks are one-step
tasks. These tasks involve opening, putting an item in,
and closing a drawer, and have been seen in Bridge-
Data, although at a lower frequency than object manip-
ulation, and with new positions. We use these tasks
to compare TRA’s performance on single-step tasks
relative to baselines.
Set B – Task Concatenation: These tasks scene in-
volves concatenating multiple tasks of the same nature

in sequence, where a robot must be able to perform
all tasks within the same trajectory. During evalua-
tion, we instruct the policy with instructions such as
sweeping multiple objects in the scene that require
composition (though are not sensitive to the order of
the composition). or are there other tasks?

Set C – Semantic Generalization: Unlike set B , these
tasks require manipulation with different objects of
the same type. We test this using various food items
within BridgeData, instructing the policy within a con-
tainer. An example of such task would be a table
containing a banana, a sushi, a bowl, and various dis-
tractor objects, and instead of using specific language
commands such as “put the banana and the sushi in
the bowl,” the instruction is “put the food items in a
container”.

Set D – Tasks with Dependency: This is the most
challenging of the set of tasks: these tasks have sub-
tasks that require previous subtasks to be completed
for them to succeed. For instance, taking an object out
of a drawer has this structure, as the drawer must be
opened before the object can be taken out.

The complete list of tasks is noted in Appendix D.

4.2 Baselines
We compare against the following baselines in our
real-world evaluation:

GRIF (Myers et al., 2023) learns a goal- and
language- conditioned policy using aligned
goal image and language representations. In
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“move the bell pepper to the bottom right of the table, 
and then move the towel to the top right of the table”

LCBC

TRA (OURS)

Figure 4: Example rollouts of a task with TRA and LCBC. While TRA is able to successfully compose the steps to complete
the task, LCBC fails to ground the instruction correctly.

0 0.2 0.4 0.6 0.8

TRA (Ours)

AWR+TRA

TRA (Ours)

AWR+TRA

Success Rate

Ablation: Using TRA as Value Signal

Goal Images Language

Figure 5: Aggregated success rate of using AWR as an addi-
tional policy learning metric over all 4 scenes.

our experiments, this becomes equivalent to
TRA when the temporal alignment objective is
removed.

GCBC (Walke et al., 2023) learns a goal-conditioned
behavioral cloning policy that concatenates the
goal image with the image observation.

LCBC (Walke et al., 2023) learns a language-
conditioned policy that concatenates the
language with the image observation.

OCTO (Ghosh et al., 2024) uses a multimodal trans-
former to learn a goal- and language-conditioned
policy. The policy is trained on Open-X
dataset (O’Neill et al., 2024), which incorporates
BridgeData in its entirety.

AWR (Peng et al., 2019) uses advantages produced
by a value function to effectively extract a pol-
icy from an offline dataset. In this experiment,
we use the difference between the contrastive loss
between the current observation and the goal rep-
resentation and the contrastive loss between the
next observation and the goal representation as a
surrogate for value function.

We train GRIF, GCBC, LCBC, and AWR using the same
augmented Bridge Dataset as TRA, and we use an
Octo-Base 1.5 model for our evaluation. A more de-
tail approach is detailed in Appendix C. During eval-
uation, we give all policies the same goal state and
language instruction regardless of the architecture, as
they are trained on the same language instruction with
the exception of Octo, which doesn’t benefit from para-
phrased language data, but does benefit from a more
diverse language annotation set across a larger dataset
of varying length and complexity.

4.3 Real-world Evaluation

Our real-world evaluation aims to answer the follow-
ing questions.

Figure 6: Two environments from the OGBench suite (Park
et al., 2025). Left: a cube stacking environment. Right: a
humanoid maze navigation environment.

Does TRA enable compositionality? Section 4
shows the success rates of the TRA method compared
to other methods on real-world robot evaluation tasks.
We marked all policies within the task orange if they
achieve the best statistically significant performance.
We first compare the performance against methods in
A . Although TRA performs well with drawer tasks,
its performance against baseline methods is not sta-
tistically significant. However, TRA performs consid-
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erably better than that of any baseline methods on
compositionally-OOD instruction following tasks.

While TRA completed 88.9% of tasks seen in B , 83.3%
of evaluations in C , and 60% of tasks in D with in-
struction following, the best-performing baseline for
B was 30% with LCBC, 43.3% for C with AWR, and
33.3% on D with Octo. The same improvement was
also present in goal reaching tasks, although at a lower
level, in which C produced 60% success rate and scene
D produced a 43.3% success rate, as compared to 46.7%
and 20% for the best baselines.

Qualitatively, we see that policies trained under TRA
provides a much smoother trajectory between differ-
ent subtasks while following instructions, while other
cannot replicate the same performance. Take remov-
ing the bell pepper + sweep task for example, with
its visualization shown Fig. 4, while TRA was able to
remove the bell pepper by grasping it and putting it
to the bottom right corner of the table, LCBC cannot
replicate the same performance, choosing to nudge the
bell pepper instead and failed to execute the task.

How well does TRA perform against Conventional
Offline RL Algorithms? While offline reinforcement
learning promises good stitching behavior (Kumar
et al., 2021), we demonstrate that TRA still outper-
forms offline reinforcement learning on robotic ma-
nipulation. Overall, TRA performs better than AWR
for both language and image tasks, outperforming
AWR by 45% on instruction following tasks, and by
25% on goal reaching tasks, showing considerable im-
provement over an offline RL method that promises
compositional generalization via stitching.

Qualitatively, a policy trained with AWR often stops
after one subtask, even though the goal instruction
or image demanded all of the subtasks be completed.
We see this in, e.g., Fig. 1, where 3 different policies
use the same goal image for a task where all 3 food
items must be put in the bowl. While TRA successfully
completes all 3 subtasks, AWR chose to only complete
one subtask and terminates right after putting the ba-
nana in the bowl. This is because AWR on an offline
dataset has a goal-reaching reward function that disre-
gards aligning representations across time in different
trajectories.

Does TRA help capturing rarely-seen skills within
the dataset? We also compare the performance of
TRA against AWR across all scenes and compare the
performance of the policies with all 3 tasks in D as
well as folding the towel, all rarely seen skills within
BridgeData. When conditioning on language, AWR
struggles to to effectively generalize to composition-
ally harder tasks, with average success rate decreasing

from 43.3% in to 6.67% from C to D , compared to a de-
crease of only 83.3% to 60% for TRA. Other agents do
not perform as well as AWR in D , as the lack of such
compositional generalization prevented the policies
from achieving all of the tasks at a reliable rate.

Is TRA sufficient in achieving compositional gen-
eralization? We demonstrate in our real-world ex-
periment that only using temporal alignment is suffi-
cient for achieving good compositional generalization.
We evaluate this by comparing a policy trained on
only temporal alignment loss (our method), and an-
other policy trained on such loss and have these losses
weighed by AWR.

Figure 5 shows that across all evaluation tasks, there
exists no statistically significant difference between
using and not using AWR in addition to temporal
alignment. In fact, using AWR marginally decreases
the efficacy of TRA, unlike when used with GCBC and
LCBC.

4.4 Testing Compositionality in Simulation

Table 2: OGBench Evaluation
Methods

Task TRA GCBC CRL GCIQL GCIVL QRL

antmaze
medium stitch 60.7(±3.0)∗45.5(±3.9) 52.7(±2.2) 29.3(±2.2) 44.1(±2.0) 59.1(±2.4)

antmaze large
stitch 12.8(±2.0) 3.4(±1.0) 10.8(±0.6) 7.5(±0.7) 18.5(±0.8)†18.4(±0.7)

antsoccer
arena stitch 17.0(±1.2) 24.5(±2.8) 0.7(±0.1) 2.1(±0.1) 21.4(±1.1) 0.8(±0.2)

humanoidmaze
medium stitch 46.1(±1.9) 29.0(±1.7) 36.2(±0.9) 12.1(±1.1) 12.3(±0.6) 18.0(±0.7)

humanoidmaze
large stitch 8.6(±1.4) 5.6(±1.0) 4.0(±0.2) 0.5(±0.1) 1.2(±0.2) 3.5(±0.5)

antmaze large
navigate 35.4(±1.8) 24.0(±0.6) 82.8(±1.4) 34.2(±1.3) 15.7(±1.9) 74.6(±2.3)

cube single
noisy 9.2(±0.9) 8.4(±1.0) 38.3(±0.6) 99.3(±0.2) 70.6(±3.3) 25.5(±2.1)

RL methods with a separate value network to update the actor are in gray.
∗The best non-RL methods up to significance are highlighted.
†We bold the best performance across all methods.

We also validated the compositional behavior of TRA
in simulation using the recent offline RL benchmark
OGBench (Park et al., 2025). This environment fea-
tures environments for locomotion and manipulation,
each with multiple offline datasets that can be used for
training, including one that explicitly tests composi-
tional generalization (the “stitch” datasets) by creating
multiple short datasets that comprise a single, larger
task. We modify our approach to TRA to account for
the lack of language instructions, and more implemen-
tation detail can be seen at Appendix G.

We evaluate the performance of TRA on 7 different
environments in OGBench. In 5 of these environments
we use the “stitch” dataset, while 2 other environ-
ment use a more general goal-reaching dataset (“navi-
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gate” and “noisy”). Table 2 shows the performance of
TRA compared to other non-hierarchical methods on
these environments from OGBench. Consistent with
our real-world results Section 4 and Fig. 5, TRA out-
performs other imitation and offline RL methods on
certain environments that require compositional gen-
eralizations, including CRL (Eysenbach et al., 2022)
that also has a separate value and critic network. In
non-stitching environments, while traditional offline
RL methods outperform TRA, TRA is still an improve-
ment over GCBC.

4.5 Failure Cases

As with other Gaussian policies, TRA struggles when
multimodal behavior is observed, and sometimes fails
to reach the goal due to early grasping or incorrect
reaching (Kumar et al., 2023). While TRA did seem
to provide small improvements on the in-distribution
tasks of A , the primary benefits derived from TRA
were seen on compositionally-OOD tasks. We further
discuss failure cases in Appendix E.1.

5 Conclusions and Limitations
In this paper, we studied a temporal alignment ob-
jective for the representations used in (goal- and
language-conditioned) behavior cloning. This addi-
tional structure provides robust compositional gener-
alization capabilities in both real-world robotics tasks
and simulated RL benchmarks. Perhaps surprisingly,
these results suggest that generalization properties
usually attributed to reinforcement learning methods
may be attainable with supervised learning with well-
structured, temporally-consistent representations.

Limitations and Future Work While TRA consis-
tently outperformed behavior cloning in real world
and simulation evaluations, the degree of improve-
ment degrades when behavior cloning cannot solve
the task at all. Future work could examine how to
improve compositional generalization in such cases
through additional structural constraints on the repre-
sentation space. To scale to more complex settings, sim-
ilar approaches with more complex architectures such
as transformers and diffusion policies may be needed
for policy and/or representation learning. TRA could
also be combined with hierarchical task decomposition
using VLMs, or with other forms of planning.
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A Code and Website
A website with code, additional visualizations, and videos is available at https://tra-paper.github.io/.

B TRA Implementation
In this section, we provide details on the implementation of temporal representation alignment (TRA) and its
training process.

B.1 Dataset Curation

We use an augmented version of BridgeData. We augment the dataset by rephrasing the language annotations, as
described by (Myers et al., 2023), with 5 additional rephrased language instruction for each language instruction
present in the dataset, and randomly sample them during training.

During data loading process, for each observation that is sampled with timestep k, we also sample k+ ≜
min(k + x,H), x ∼ Geom(1− γ), and load sk along with sk+ . We employ random cropping, resizing, and hue
changes during training process image robustness. We set γ = 0.95 for policy training on BridgeData.

B.2 Policy Training

We use a ResNet-34 architecture for the policy network. We train our policy with one Google V4-8 TPU VM
instance for 150,000 steps, which takes a total of 20 hours. We use a learning rate of 3×10−4, 2000 linear warm-up
steps, and a MLP head of 3 layers of 256 dimensions after encoding the observation representations as well as
goal representations.

C Baseline Implementations
We summarize the implementation details of the baselines discussed in Section 4.2.

C.1 Octo

We use the Octo-base 1.5 model publicly available on HuggingFace for evaluating Octo baselines. We use
inference code that is readily available for both image- and language- conditioned tasks. During inference, we
use an action chunking window of 4 and an execution horizon window of 4.

C.2 Behavior Cloning

We use the same architecture for LCBC and GCBC as in Myers et al. (2023); Walke et al. (2023). During the
training process we use the same hyperparameters as TRA.

C.3 Advantage Weighted Regression

In order to train an AWR agent without separately implementing a reward critic, we follow Eysenbach et al.
(2022) and use a surrogate for advantage:

A(st) = LNCE
(
f(st), f(g)

)
− LNCE

(
f(st+1), f(g)

)
. (19)

Here, f can be any of the encoders ϕ, ξ, ψ. L is the same InfoNCE loss defined Section 3, and g is defined as
either the goal observation or the goal language instruction, depending on the modality.

And we extract the policy using advantage weighted regression (AWR) (Neumann and Peters, 2008):

π ← argmax
π

Es,a∼D

[
log π(a|s, z) exp

(
A(s, a)/β

)]
. (20)

During training, we set β to 1, and we use a batch size of 128, the same value as policy training for our method.

D Experiment Details
In this section, we go through our experiment details and how they are set up. During evaluation, we randomly
reset the positions of each item within the table, and perform 5 to 10 trials on each task, depending on whether this
task is important within each scene. We examine tasks that are seen in BridgeData, which include conventionally
less challenging tasks such as object manipulation, and challenging tasks to learn within the dataset such as cloth
folding and drawer opening.
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D.1 List of Tasks

Table 3 describes each task within each scene, and the language annotation used when the policy is used
for inference. Every task that is outside of the drawer scene are multiple step, and require compositional
generalization.

Table 3: Task Instructions
Scene Count Task Description Instruction

Drawer
10 open the drawer “open the drawer”

10 put the mushroom in the drawer “put the mushroom in the drawer”

10 close the drawer “close the drawer”

Task Generalization

5 put the spoons on the plates “move the spoons onto the plates.”

5 put the spoons on the towels “move the spoons on the towels”

6 fold the cloth into the center from all corners “fold the cloth into center”

10 sweep the towels to the right “sweep the towels to the right of the table”

Semantic Generalization
10 put the sushi and the corn on the plate “put the food items on the plate”

5 put the sushi and the mushroom in the bowl “put the food items in the bowl”

10 put the sushi, corn, and the banana in the bowl “put everything in the bowl”

Tasks With Dependency

10 take mushroom out of drawer “open the drawer and then take the mush-
room out of the drawer”

10 move bell pepper and sweep towel
“move the bell pepper to the bottom right
corner of the table, and then sweep the
towel to the top right corner of the table”

10 put the corn on the plate, and then put the sushi in the pot “put the corn on the plate and then put
the sushi in the pot”

D.2 Inference Details

During inference, we use a maximum of 200 timesteps to account for long-horizon behaviors, which remains the
same for all policies. We determine a task as successful when the robot completes the task it was instructed to
within the timeframe. For evaluating baselines, we use 5 trials for each of the tasks.

E Additional Visualizations
In this section, we show additional visualizations of TRA’s execution on compositionally-OOD tasks. We use
folding, taking mushroom out of the drawer, and corn on plate, then sushi in the pot as examples, as these tasks require
a strong degree of dependency to complete at Appendix E.

E.1 Failure Cases

We break down failure cases in this section. While TRA performs well in compositional generalization, it cannot
counteract against previous failures seen with behavior cloning with a Gaussian Policy.

F Analysis of Compositionality
We prove the results from Section 3.5.

F.1 Goal Conditioned Analysis

Theorem 1. SupposeD is distributed according to Eq. (13) andD∗ is distributed according to Eq. (13). When γ > 1−1/H
and α > 1, for optimal features ϕ and ψ under Eq. (12), we have

ERR(π;D∗) ≤ ERR(π;D) + α− 1

2α
+
(α− 2

2α

)
1{α > 2}. (18)

Proof. We have from Eq. (15) for K ∼ Geom(1− γ):

ERR(π;D∗) ≜ ED∗

[ 1

H ′

H′∑
t=1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]
14
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“open the drawer, and then take the 
mushroom out of the drawer”

“fold the towel into center”

“open the drawer, and then take the 
mushroom out of the drawer”

“fold the towel into center”

“put the corn on the plate, and then 
put the sushi in the pot”

Figure 7: TRA performs compositional generatlization over a variety of tasks seen within BridgeData.

=
1

H ′ ED∗

[H′−2H∑
t=1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]
+

1

H ′ ED∗

[H′−H∑
H′−2H+1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]

+
1

H ′ ED∗

[ H′∑
t=H′−H+1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]

≤ 1

H ′ ED∗

[ H′∑
t=H′−H+1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]
+

1

H ′ ED∗

[H′−H∑
t=H′−2H+1

∥ãt,i−π(s̃t,i,g̃i)∥2

ndA

]
+
(α− 2

2α

)
1{α > 2}

≤ 1

H ′ ED∗

[ H′∑
t=H′−H+1

∥ãt,i−π(s̃t,i,s̃H′,i)∥
2

ndA

]

+
1

H ′ ED∗

[H′−H∑
t=H′−2H+1

EK
[∥ãt,i−pπ(s̃t,i|s̃H′−K,i)∥

2

ndA

]]
+
(α− 2

2α

)
1{α > 2}
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“put everything in the bowl”

“open the drawer, and then take the 
mushroom out of the drawer”

Figure 8: Most of the failure cases came from the fact that a policy cannot learn depth reasoning, causing early grasping or
late release, and it has trouble reconciling with multimodal behavior.

≤ 1

H ′ ED∗

[ H′∑
t=H′−H+1

∥ãt,i−π(s̃t,i,s̃H′,i)∥
2

ndA

]

+
1

H ′ ED∗

[H′−H∑
t=H′−2H+1

EK
[∥ãt,i−pπ(s̃t,i|s̃H′−K,i)∥

2

ndA

]]
+
(α− 2

2α

)
1{α > 2}

≤ 1

H ′ ED∗

[ H′∑
t=H′−H+1

∥ãt,i−π(s̃t,i,s̃H′,i)∥
2

ndA

]

+
1

H ′ ED∗

[H′−H∑
t=H′−2H+1

EK
[∥ãt,i−pπ(s̃t,i|ψ(s̃H′−K,i))∥

2

ndA

]]
+
(α− 2

2α

)
1{α > 2}

≤ ERR(π;D∗) +
1

H ′ ED∗

[1− γH
1− γ

]
+

(α− 2

2α

)
1{α > 2}

≤ ERR(π;D∗) +
α− 1

2α
+

(α− 2

2α

)
1{α > 2}. (21)

F.2 Language Conditioned Analysis

Corollary 1.1. Under the same conditions as Theorem 1,

ERRℓ(π;D∗) ≤ ERRℓ(π;D) + α− 1

2α
+
(α− 2

2α

)
1{α > 2}.

The proof is similar to Appendix F.1, but over the predictions of ξ instead of ψ.

F.3 Visualizing the Bound

We compare the bound from Theorem 1 with the “worst-case” bound of ERR(π;D∗)−ERR(π;D) in Appendix F.3.
The bound from Theorem 1 is tighter than the worst-case bound, and it shows that the compositional generaliza-
tion error decreases as α increases.
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Figure 9: Visualizing the bound (Eq. 18 from Theorem 1) on the compositional generalization error.

Table 4: Success Rate for Different GCBC Architectures in OGBench.

Environment GCBC GCBC-ϕ

antmaze medium stitch 45.5±(3.9) 48.7±(2.7)

antmaze large stitch 3.4±(1.0) 6.8±(1.3)

antsoccer arena stitch 24.5±(2.8) 1.4±(0.3)

humanoidmaze medium stitch 29.0±(1.7) 34.4±(1.7)

humanoidmaze large stitch 5.6±(1.0) 3.5±(1.1)

antmaze large navigate 24±(0.6) 16.1±(0.8)

cube single noisy 8.4±(1.0) 8.7±(0.9)

Table 5: TRA hyperparameters.

Hyperparameter Value

State and goal encoder dimensions (64, 64, 64)
State and goal encoder latent dimension 64
Discount factor γ 0.995 (large locomotion environments), 0.99 (other)
Alignment coefficient α 60 (medium locomotion), 100 (large locomotion), 20 (non-stitch)

G OGBench Implementation Details
To implement TRA in OGBench, which does not have a corresponding language label for all goal-reaching
tasks, we make the following revision to TRA to accommodate the lack of a language task. We train a policy
π(a|ϕ(s), ψ(g)), in which we propagate the behavior cloning loss throughout the entire network. Both the state
and goal encoders are MLPs with identical architecture. We detail the configuration in 5. This is to simulate the
ResNet architecture and CLIP embeddings we use from real-world policy training. We define separate state and
goal encoder ϕ(s) and ψ(g), and we modify LTRA as:

LTRA = LBC({si, ai, s+i }
K
i=1;π, ϕ, ψ) + αLNCE({si, s+i }

K
i=1;ϕ, ψ) (22)

The rest of the implementation are carried over from OGBench. We evaluate each method with 10 seeds, and we
take the final 3 evaluation epoch per seed to calculate the average success rate, the same way OGBench calculates
success rate for its baselines. While we used α = 1 in real world experiments, consistent with implementation
from Myers et al. (2023), we adjust our α value in OGBench, as it is a hyperparameter. We report our optimal α
configuration in Table 5.
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Note that α = 0 turns the formulation into a version of GCBC with different architecture; we denote this
GCBC-ϕ. We compare the performance of GCBC and GCBC-ϕ here across the 7 environments using table 4.
Although the second formulation is parameterized than the original GCBC configuration, they have similar
performances across the environments that we have evaluated on — the performance of TRA does not rely on
extra parameterization, but learning a structured temporal representation.

We report the value of hyperparameters in table 5. The rest of the relevant hyperparameters are implemented
from OGBench unless specified in the table.

18


	Introduction
	Related Work
	Temporal Representation Alignment
	Representations for Reaching Distant Goals
	Interfacing with Language Instructions
	Temporal Alignment
	Implementation
	Temporal Alignment and Compositionality

	Experiments
	Real-World Experimental Setup
	Baselines
	Real-world Evaluation
	Testing Compositionality in Simulation
	Failure Cases

	Conclusions and Limitations
	Code and Website
	TRA Implementation
	Dataset Curation
	Policy Training

	Baseline Implementations
	Octo
	Behavior Cloning
	Advantage Weighted Regression

	Experiment Details
	List of Tasks
	Inference Details

	Additional Visualizations
	Failure Cases

	Analysis of Compositionality
	Goal Conditioned Analysis
	Language Conditioned Analysis
	Visualizing the Bound

	OGBench Implementation Details

